В бескислородной стадии энергетического обмена расщепляются молекулы. В бескислородной стадии энергетического обмена расщепляются молекулы Кислородное окисление, или дыхание

Энергетический обмен

Энергетический обмен (диссимиляция) — совокупность ферментативных реакций в живом организме, направленных на расщепление сложных органических веществ (белков, нуклеиновых кислот, жиров, углеводов), поступающих с пищей и запасённых в самом организме (крахмал, гликоген и пр.) до простых веществ с высвобождением энергии.

Условно энергетический обмен можно разделить на несколько этапов.

Первый этап — подготовительный , включающий в себя расщепление сложных веществ на простые молекулы.

Следующий этап — бескислородный , протекающий в цитоплазме клеток без участия кислорода.

Наиболее важным является кислородный этап . Он протекает в митохондриях и требует присутствия кислорода.

Подготовительный этап энергетического обмена заключается в расщеплении крупных молекул органических веществ на более мелкие.

Их распад происходит в различных частях желудочно-кишечного тракта. Внутри клеток органические вещества расщепляются при участии ферментов лизосом.

Выделяющаяся в результате подготовительного этапа энергия рассеивается в виде тепла, а образовавшиеся малые молекулы используются в качестве строительного материала.

Бескислородный этап энергетического обмена характеризуется ферментативным распадом органических веществ в анаэробных условиях.

Он идёт непосредственно в цитоплазме клетки.

Примерами бескислородных процессов служат гликолиз и брожение .

В результате бескислородного этапа энергетического обмена организмы получают энергию, необходимую для жизнедеятельности; 40% энергии расходуется на синтез АТФ, остальное расходуется в виде теплоты.

Кислородное расщепление (кислородный этап) — этап энергетического обмена, во время которого происходит полное окисление продуктов бескислородного этапа до углекислого газа и воды с выделением энергии и её аккумулированием в молекулах АТФ.

Так, при окислении двух молекул молочной кислоты образуется 36 молекул АТФ. Часть молекул расходуется на сами процессы окисления, а 21 молекула АТФ передается в цитоплазму для обеспечения работы других клеточных структур.

2C 3 H 6 O 3 + 6O 2 + 36H 3 PO 4 + 36АДФ => 6CO 2 + 6H 2 O + 36АТФ

Кислородное расщепление идёт на внутренней мембране митохондрий и в матриксе под действием многочисленных ферментов крист.

Молекула АТФ (аденозинтрифосфорная кислота ) является универсальным переносчиком и основным аккумулятором химической энергии в клетке. Она представляет собой нуклеотид, состоящий из аденина, рибозы и трёх остатков фосфорной кислоты. В организме АТФ синтезируется из АДФ и неорганического фосфата:

АДФ + H 3 PO 4 + энергия → АТФ + H 2 O.

Малые размеры молекул позволяют им легко диффундировать в различные участки клетки, где необходимо обеспечить энергией процессы жизнедеятельности.

В организме АТФ является одним из самых часто обновляемых веществ — так у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2 000 — 3 000 циклов ресинтеза (около 40 кг АТФ в день). Таким образом, запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы.

Клетка — функциональная единица организма. В клетку непрерывно поступают различные вещества. В ней синтезируются новые молекулы; часть молекул разрушается. Одни вещества расходуются клеткой, другие откладываются в запас, третьи выводятся из клетки. Вещества постоянно перемещаются из одной части клетки в другую. В одних молекулах клетки энергия запасается, другие молекулы расщепляются с освобождением энергии, необходимой для жизни клетки.

В клетке одновременно протекают тысячи различных ферментативных реакций, вся совокупность которых называется метаболизмом (от греч. metabole — изменение, превращение) или клеточным обменом веществ . Главная роль в этих реакциях принадлежит ферментам и АТФ, без которых они не протекают. В процессе метаболизма клетка получает энергию, которая освобождается при окислении молекул жиров, углеводов и белков. Метаболизм обеспечивает клетку и строительным материалом: в ней образуются новые сложные молекулы.

Метаболизм включает две группы взаимосвязанных реакций: синтез веществ — пластический обмен и расщепление веществ — энергетический обмен . Познакомимся сначала с энергетическим обменом.

В ходе энергетического обмена сложные молекулы углеводов, жиров, белков с участием множества ферментов окисляются до углекислого газа и воды. Освобождающаяся при этом энергия запасается в молекулах АТФ.

Энергетический обмен у аэробов включает три стадии:

  • подготовительную;
  • бескислородную;
  • кислородную.

В первую, подготовительную стадию крупные молекулы распадаются на «блоки»: белки расщепляются до аминокислот, полисахариды — до моносахаридов, жиры — до глицерина и жирных кислот, нуклеиновые кислоты — до нуклеотидов. Этот процесс происходит в лизосомах клетки. Небольшое количество освобождающейся при этом энергии рассеивается в виде тепла.

Вторая, бескислородная стадия протекает в цитоплазме, где органические вещества расщепляются до еще более простых. Эта стадия протекает без участия кислорода; энергии при этом освобождается немного; часть ее рассеивается в виде тепла и небольшая часть расходуется на синтез двух молекул АТФ из АДФ.

Каким образом в клетках образуется АТФ?

Откуда берется энергия на синтез ее молекул? Было уст 1000 ановлено, что большая часть АТФ синтезируется за счет энергии протона H + и электронов, источником которых служат атомы водорода. А атомы водорода освобождаются при расщеплении молекул органических веществ.

Рассмотрим процессы, характерные для второй стадии, на примере гликолиза — процесса расщепления глюкозы без участия кислорода. Молекула глюкозы, которая содержит 6 атомов углерода, расщепляется на две трехуглеродные молекулы пировиноградной кислоты — ПВК. Расщепление происходит в несколько этапов и включает более 10 реакций с участием большого числа ферментов. При этом освобождается энергия, которая используется на синтез двух молекул АТФ из АДФ.
При окислении молекулы глюкозы от нее отщепляются электроны и ионы водорода, которые присоединяются к особому веществу НАД + . Оно переходит в восстановленную форму НАД Н. Молекулы НАД переносят протоны и электроны в клетке от одной реакции к другой, сами при этом в реакциях не участвуют, не разрушаются, используясь многократно.

Таким образом, в результате бескислородной стадии расщепления глюкозы образуются 2 молекулы ПВК, 2 молекулы АТФ и 2 молекулы НАД Н 2 .

Судьба молекул пировиноградной кислоты (ПВК) в клетках разных организмов складывается по-разному. Существуют микроорганизмы, обитающие в бескислородной среде. Их называют анаэробами (от греч. an — отрицательная частица и aer — воздух) . В клетках анаэробов протекают только две (у аэробов три) стадии энергетического обмена — подготовительная и бескислородная, а молекулы АТФ синтезируются в процессе брожения. У анаэробов ПВК превращается либо в молочную кислоту, либо в этиловый спирт, либо в уксусную кислоту, содержащие еще много энергии.
Молочная кислота образуется в процессе жизнедеятельности -бактерий молочнокислого брожения, которое происходит при скисании молока, квашении капусты. Спиртовое брожение осуществляется дрожжевыми грибами, в результате которого образуются этиловый спирт и углекислый газ. Брожение широко используется в хозяйственной деятельности человека при получении теста, пива, вина, квашении капусты, производстве кефира.

Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.

У аэробных организмов (живущих в кислородной среде) выделяют три этапа энергетического обмена: подготовительный, бескислородное окисление и кислородное окисление; у анаэробных организмов (живущих в бескислородной среде) и аэробных при недостатке кислорода — два этапа: подготовительный, бескислородное окисление.

Подготовительный этап

Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Бескислородное окисление, или гликолиз

Этот этап заключается в дальнейшем расщеплении органических веществ, образовавшихся во время подготовительного этапа, происходит в цитоплазме клетки и в присутствии кислорода не нуждается. Главным источником энергии в клетке является глюкоза. Процесс бескислородного неполного расщепления глюкозы — гликолиз .

Потеря электронов называется окислением, приобретение — восстановлением, при этом донор электронов окисляется, акцептор восстанавливается.

Следует отметить, что биологическое окисление в клетках может происходить как с участием кислорода:

А + О 2 → АО 2 ,

так и без его участия, за счет переноса атомов водорода от одного вещества к другому. Например, вещество «А» окисляется за счет вещества «В»:

АН 2 + В → А + ВН 2

или за счет переноса электронов, например, двухвалентное железо окисляется до трехвалентного:

Fe 2+ → Fe 3+ + e — .

Гликолиз — сложный многоступенчатый процесс, включающий в себя десять реакций. Во время этого процесса происходит дегидрирование глюкозы, акцептором водорода служит кофермент НАД + (никотинамидадениндинуклеотид). Глюкоза в результате цепочки ферментативных реакций превращается в две молекулы пировиноградной кислоты (ПВК), при этом суммарно образуются 2 молекулы АТФ и восстановленная форма переносчика водорода НАД·Н 2:

С 6 Н 12 О 6 + 2АДФ + 2Н 3 РО 4 + 2НАД + → 2С 3 Н 4 О 3 + 2АТФ + 2Н 2 О + 2НАД·Н 2 .

Дальнейшая судьба ПВК зависит от присутствия кислорода в клетке. Если кислорода нет, у дрожжей и растений происходит спиртовое брожение, при котором сначала происходит образование уксусного альдегида, а затем этилового спирта:

  1. С 3 Н 4 О 3 → СО 2 + СН 3 СОН,
  2. СН 3 СОН + НАД·Н 2 → С 2 Н 5 ОН + НАД + .

У животных и некоторых бактерий при недостатке кислорода происходит молочнокислое брожение с образованием молочной кислоты:

С 3 Н 4 О 3 + НАД·Н 2 → С 3 Н 6 О 3 + НАД + .

В результате гликолиза одной молекулы глюкозы высвобождается 200 кДж, из которых 120 кДж рассеивается в виде тепла, а 80% запасается в связях АТФ.

Кислородное окисление, или дыхание

Заключается в полном расщеплении пировиноградной кислоты, происходит в митохондриях и при обязательном присутствии кислорода.

Пировиноградная кислота транспортируется в митохондрии (строение и функции митохондрий — лекция №7). Здесь происходит дегидрирование (отщепление водорода) и декарбоксилирование (отщепление углекислого газа) ПВК с образованием двухуглеродной ацетильной группы, которая вступает в цикл реакций, получивших название реакций цикла Кребса. Идет дальнейшее окисление, связанное с дегидрированием и декарбоксилированием. В результате на каждую разрушенную молекулу ПВК из митохондрии удаляется три молекулы СО 2 ; образуется пять пар атомов водорода, связанных с переносчиками (4НАД·Н 2 , ФАД·Н 2), а также одна молекула АТФ.

Суммарная реакция гликолиза и разрушения ПВК в митохондриях до водорода и углекислого газа выглядит следующим образом:

С 6 Н 12 О 6 + 6Н 2 О → 6СО 2 + 4АТФ + 12Н 2 .

Две молекулы АТФ образуются в результате гликолиза, две — в цикле Кребса; две пары атомов водорода (2НАДЧН2) образовались в результате гликолиза, десять пар — в цикле Кребса.

Последним этапом является окисление пар атомов водорода с участием кислорода до воды с одновременным фосфорилированием АДФ до АТФ. Водород передается трем большим ферментным комплексам (флавопротеины, коферменты Q, цитохромы) дыхательной цепи, расположенным во внутренней мембране митохондрий. У водорода отбираются электроны, которые в матриксе митохондрий в конечном итоге соединяются с кислородом:

О 2 + e — → О 2 — .

Протоны закачиваются в межмембранное пространство митохондрий, в «протонный резервуар». Внутренняя мембрана непроницаема для ионов водорода, с одной стороны она заряжается отрицательно (за счет О 2 —), с другой — положительно (за счет Н +). Когда разность потенциалов на внутренней мембране достигает 200 мВ, протоны проходят через канал фермента АТФ-синтетазы, образуется АТФ, а цитохромоксидаза катализирует восстановление кислорода до воды. Так в результате окисления двенадцати пар атомов водорода образуется 34 молекулы АТФ.

Рассмотрим более подробно, каким образом живые организмы освобождают запасенную в сложных органических соединениях энергию. Человечество, например, как и живая клетка, постоянно нуждается в энергии. Для этого в большинстве случаев сжигается органическое топливо (газ, нефть, уголь). Запасенная в топливе химическая энергия превращается сначала в тепловую (энергия перегретого пара), затем в механическую (вращение турбин электростанций), и, наконец, в электрическую энергию, которая может передаваться по линиям электропередачи на значительные расстояния и использоваться в различных целях. Процесс горения органического топлива (например, газа метана) можно описать простым уравнением:

СН 4 + 2О 2 = СО 2 + 2Н 2 О + энергия (тепло)

Во-первых, живые клетки проводят реакцию окисления в несколько стадий, постепенно окисляя насыщенный углеводород до спирта, альдегида (или кетона), органической кислоты и, наконец, углекислого газа. Условно это можно проиллюстрировать следующей последовательностью превращений:

СН 4 --> CH 3 OH --> H 2 C=O --> HCOOH --> CO 2

В конечном итоге в этом процессе выделится столько же энергии (тепла), как и при простом сжигании метана, однако она будет выделяться порциями, по частям.

Отсюда видно, что наиболее богаты энергией те органические вещества, в которых углерод максимально восстановлен . В клетках это липиды с большим количеством насыщенных жирных кислот, полное "сжигание" которых дает максимальное количество энергии. Расщепление углеводов, относящихся к альдегидоспиртам или кетоспиртам, или аминокислот будет давать примерно вдвое меньше энергии, так как большинство углеродных атомов в молекулах этих соединений уже частично окислено.

Во-вторых, не вся освобождаемая в ходе таких реакций энергия рассеивается в виде тепла, так как живые клетки запасают часть выделяемой энергии в виде АТФ . Для этого реакция, протекающая с освобождением энергии, "сопрягается" с реакцией, протекающей с поглощением энергии – с образованием АТФ из АДФ и неорганического фосфата (Н 3 РО 4).

В-третьих, для получения энергии совершенно не обязательно окислять органические вещества полностью , т.е. до углекислого газа. Энергия будет выделяться и при окислении, например, спирта до карбоновой кислоты, хотя, конечно, ее количество будет меньше, чем при полном окислении.

В-четвертых, живые клетки могут осуществлять окисление органических веществ и в отсутствие кислорода . Условно это можно проиллюстрировать следующей последовательностью реакций:

СН 3 - СН 3 --> CH 2 =CH 2 + 2H + ,

CH 2 =CH 2 + H 2 O --> CH 3 -CH 2 OH,

CH 3 -CH 2 OH --> CH 3 -HC=O + 2H + ,

CH 3 -HC=O + H 2 O --> CH 3 -HC(OH) 2 ,

CH 3 -HC(OH) 2 --> CH 3 -COOH + 2H +

Итак, мы видим, как один из углеродных атомов в молекуле этана последовательно окисляется до спирта, альдегида и карбоновой кислоты. Последовательно "отрываемые" от этого углеродного атома пары атомов водорода, которые называют восстановительными эквивалентами , в клетках присоединяются к универсальным акцепторам атомов водорода – молекулам НАД + или ФАД (см. лекцию "Органические вещества. Липиды. Нуклеотиды"), восстанавливая их до НАДН или ФАДН 2 . Эти вещества могут использоваться в реакциях биосинтеза для восстановления органических соединений (показанные выше реакции протекают в обратную сторону), а в присутствии кислорода НАДН и ФАДН 2 окисляются в дыхательной цепи митохондрий с освобождением большого количества энергии, запасаемой в виде АТФ.

Помимо сжигания органического топлива, человечество для получения энергии использует гидроэлектростанции: вода, накопленная по одну сторону плотины, стекает вниз и вращает турбины, производя электроэнергию. Интересно отметить, что живые клетки научились использовать аналогичный принцип задолго до появления человека как биологического вида: окисление НАДН и ФАДН 2 в дыхательной цепи митохондрий сопровождается переносом через митохондриальную мембрану из матрикса в межмембранное пространство протонов и созданием на мембране значительного градиента их концентрации; мембрана при этом выступает в качестве плотины. Когда протоны "текут" внутрь митохондрий по градиенту концентрации через специальный канал в молекуле фермента АТФ-синтетазы, они "вращают" этот фермент (как вода турбину), что приводит к синтезу АТФ (см. ниже).

Итак, основу энергетического обмена в клетках составляют последовательно протекающие окислительно-восстановительные реакции. В цепи таких реакций в анаэробных условиях одни органические вещества окисляются (теряют атомы водорода), а другие (главным образом, НАД+ и ФАД) восстанавливаются (присоединяют атомы водорода). В аэробных условиях восстановленные НАДН и ФАДН 2 сами окисляются в митохондриях, отдавая электроны кислороду, который восстанавливается с образованием воды. Выделяемая при протекании этих реакций энергия частично рассеивается в виде тепла, а частично запасается в виде АТФ.

Основным источником энергии для живых организмов, в том числе и для человека, служат углеводы. Условно процесс их расщепления и окисления, сопровождающийся запасанием энергии в виде АТФ, можно разделить на три этапа: подготовительный, анаэробный (или бескислородный) и аэробный (или кислородный) . На подготовительном этапе сложные полисахариды расщепляются пищеварительными ферментами до мономеров (глюкозы). Дальнейшие превращения глюкозы происходят в процессе гликолиза.

Бескислородный этап энергетического обмена

Последовательные реакции гликолиза катализируются 11 ферментами, которые локализованы в гиалоплазме. Условно гликолиз можно разделить на 2 стадии: на первой стадии глюкоза с затратой АТФ превращается в глицеральдегидфосфат, а на второй в результате окислительно-восстановительных реакций образуются АТФ и молочная кислота. Накапливаемый в качестве промежуточного продукта гликолиза восстановленный НАДН окисляется при образовании молочной кислоты до НАД + , который снова возвращается в гликолиз. При наличии достаточного количества кислорода НАДН может окисляться в дыхательной цепи митохондрий. В таком случае гликолиз заканчивается на стадии образования не молочной, а пировиноградной кислоты (пирувата), которая вступает в цикл Кребса и полностью окисляется до СО 2 .

При распаде одной молекулы глюкозы затрачивается 2 и образуется 4 молекулы АТФ, т.е. суммарный энергетический выход гликолиза составляет 2 молекулы АТФ . Необходимая для этого энергия выделяется в результате внутримолекулярного окисления альдегидной группы до карбоксильной. В виде АТФ запасается около 30% выделяемой при этом энергии, что, однако, составляет только 5% энергии, которую можно получить при полном окислении глюкозы до СО 2 и Н 2 О. Таким образом, гликолиз энергетически менее выгоден, чем дыхание. В гликолиз включаются и другие гексозы (галактоза, фруктоза), пентозы и глицерин. Субстратом гликолиза у животных и грибов может быть гликоген (этот процесс называется гликогенолизом), а у растений – крахмал.

По механизму, аналогичному гликолизу, протекает процесс брожения у различных микроорганизмов. Поскольку живые организмы, по-видимому, впервые появились на Земле в то время, когда ее атмосфера была лишена кислорода, анаэробное брожение следует рассматривать как простейший биохимический механизм получения энергии из питательных веществ. Брожению подвергаются углеводы (гексозы, пентозы), спирты, органические кислоты и азотистые основания. В зависимости от типа брожения его продуктами могут быть спирты (этиловый и др.), органические кислоты (муравьиная, уксусная, молочная, пропионовая, масляная), ацетон, СО 2 , а в ряде случаев – молекулярный водород. По виду образуемых продуктов брожение подразделяют на спиртовое, молочнокислое, пропионовокислое и т.д., что легло в основу названия ряда групп бактерий (молочнокислые, маслянокислые, пропионовокислые и т.д.). В процессе спиртового или молочнокислого брожения из одной молекулы глюкозы образуются по две молекулы пирувата, АТФ и НАДН. Поскольку НАДН необходимо окислить и вернуть в цикл брожения, пируват восстанавливается им до молочной кислоты (лактата) или этилового спирта.

Брожение играет важную роль в круговороте веществ в природе (анаэробная деградация целлюлозы и других органических веществ), а также широко применяется в практике. В течение многих веков спиртовое брожение используется в виноделии, пивоварении, выпечке хлеба (а в последнее время – при получении топлива); молочнокислое – для получения кисломолочных продуктов, при квашении капусты, солении огурцов, силосовании кормов для скота; пропионовокислое – в сыроделии; ацетонно-бутиловое – для получения растворителей и т.д.

Кислородный этап энергетического обмена

Следующим за гликолизом этапом энергетического обмена является клеточное дыхание , или биологическое окисление – кислородный этап окисления органических соединений. В широком смысле слова дыхание – это процесс поглощения кислорода (О 2) из окружающей среды и выделения углекислого газа (СО 2) живыми организмами, необходимый для поддержания внутриклеточных окислительных процессов, обеспечивающих энергетический обмен. Дыхание подразделяют на внешнее дыхание – газообмен между организмом и окружающей средой, и тканевое, или клеточное дыхание (биологическое окисление) – совокупность ферментативных окислительно-восстановительных реакций, в результате которых сложные органические вещества окисляются кислородом до СО 2 с освобождением энергии, запасаемой клетками в форме АТФ.

Клеточное дыхание у растений, животных и большинства аэробных микроорганизмов начинается с отщепления СО 2 (декарбоксилирования) от молекулы пировиноградной кислоты (пирувата), которая образуется в процессе гликолиза, т.е. гликолиз является необходимой подготовительной стадией клеточного дыхания при расщеплении углеводов. В результате этой реакции от пирувата отрывается СО 2 , а образовавшийся двухуглеродный остаток – радикал уксусной кислоты (ацетил-радикал) присоединяется к молекуле универсального переносчика углеводородных радикалов - кофермента А - с образованием ацетил-кофермента А (ацетил-КоА ). В результате этой реакции НАД + восстанавливается до НАДН. Ацетил-КоА и НАДН образуются и при окислении жирных кислот, которые также являются субстратами клеточного дыхания. Дальнейшее окисление ацетил-КоА происходит в цикле Кребса , а НАДН – в дыхательной цепи митохондрий . В цикл Кребса на различных стадиях могут вступать все аминокислоты. Таким образом, в этом цикле сходятся пути окисления углеводов, жиров и белков.

(называемый также цикл трикарбоновых кислот или цикл лимонной кислоты) – сложный многоступенчатый окислительно-восстановительный процесс, в результате которого остаток уксусной кислоты, получаемый от ацетил-КоА, полностью окисляется до двух молекул СО 2 с образованием трех молекул НАДН, одной молекулы ФАДН 2 и одной молекулы ГТФ. Все ферменты цикла Кребса, как и ферменты окисления жирных кислот, локализованы в матриксе митохондрий, а один фермент – сукцинатдегидрогеназа – находится во внутренней митохондриальной мембране.

На первой стадии цикла Кребса остаток уксусной кислоты передается от ацетил-КоА на молекулу щавелевоуксусной кислоты (оксалоацетата) с образованием лимонной кислоты (цитрата), которая через промежуточную реакцию образования цис-аконитовой кислоты превращается в изолимонную кислоту (изоцитрат). От изолимонной кислоты отщепляется СО 2 и 2 атома Н + , в результате чего образуется молекула НАДН и a-кетоглутаровая кислота (a-кетоглутарат), которая взаимодействует с молекулой кофермента А. При этом отщепляется вторая молекула СО 2 и образуется еще одна молекула НАДН и богатое энергией соединение сукцинил-КоА, которое расщепляется с образованием свободной янтарной кислоты (сукцината), что сопровождается синтезом ГТФ из ГДФ и Ф н. Янтарная кислота окисляется до фумаровой (фумарата) с образованием ФАДН 2 , фумаровая кислота с присоединением воды превращается в яблочную (малат), а яблочная кислота окисляется до щавелевоуксусной (оксалоацетата) с образованием НАДН. На этой стадии цикл Кребса замыкается, т.е. оксалоацетат может снова вступать в цикл и конденсироваться со следующим остатком уксусной кислоты с образованием цитрата.

Таким образом, суммарную реакцию цикла Кребса можно описать следующим уравнением:

Ацетил-КоА +3НАД + + ФАД + ГДФ + Ф н +3Н 2 О --> 2СО 2 + 3НАДН + 3Н + + ФАДН 2 + ГТФ + КоА

Освобождаемая при окислении ацетил-КоА энергия запасается в виде одной молекулы ГТФ (которая может превращаться в АТФ) и четырех молекул восстановительных эквивалентов (3 молекулы НАДН и одна ФАДН 2), которые могут использоваться в различных процессах биосинтеза или окисляться. Их дальнейшее окисление происходит в дыхательной цепи митохондрий, локализованной во внутренней митохондриальной мембране. "Работа" дыхательной цепи митохондрий заключается в окислении НАДН, т.е. в "отрывании" от него электронов, и переносе их на молекулу кислорода. У аэробных бактерий дыхательная цепь расположена в специальных структурах плазматической мембраны – мезосомах, и в общих чертах напоминает дыхательную цепь митохондрий.

начинается с окисления НАДН в дыхательной цепи митохондрий, сопровождающегося отщеплением двух электронов и протона (Н +). Окончательным акцептором этих электронов является О 2 , который соединяется с находящимися в матриксе ионами Н + с образованием Н 2 О.

Окисление НАДН начинает фермент НАДН-дегидрогеназа, которая отщепляет от него два электрона и протон, освобождающийся в матрикс. Проследим путь отщепляемых от молекулы НАДН электронов. НАДН-дегидрогеназа представляет собой сложный комплекс, состоящий из большого количества белков (около 40), и содержит в качестве коферментов флавинмононуклеотид и несколько железо-серных кластеров. Отрываемые от НАДН электроны с помощью этих коферментов передаются на растворенное в митохондриальной мембране низкомолекулярное гидрофобное соединение - кофермент Q (убихинон), который передает их в цепь переносчиков электронов – цитохромов. Цитохромы представляют собой гем-содержащие белки (входящий в их состав гем напоминает гем гемоглобина). За счет изменения валентности входящего в состав гема атома железа они способны обратимо присоединять и отдавать электрон (Fe 3+ + e - --> Fe 2+ и затем Fe 2+ - e - --> Fe 3+). Кофермент Q передает электроны цитохромам b и с 1 , а от них электроны передаются цитохрому с. Он в свою очередь передает электроны цитохромам а и а 3 (цитохромоксидазе, в этом ферменте в переносе электронов участвуют также ионы меди), которые передают их окончательному акцептору – молекулярному кислороду (О 2).

"Отбираемые" от НАДН электроны передаются в дыхательной цепи от переносчика к переносчику, теряя при этом свой восстановительный потенциал. Часть выделяемой при этом энергии рассеивается в виде тепла, но, кроме того, часть энергии тратится на создание на внутренней мембране митохондрий разности концентраций протонов (электрохимического потенциала) за счет их переноса в нескольких пунктах дыхательной цепи (так называемых пунктах сопряжения) из матрикса в межмембранное пространство.

Эта разность концентраций протонов возникает в результате того, что перенос электронов от НАДН к кислороду сопровождается "перекачиванием" протонов из матрикса митохондрий в межмембранное пространство.

Во-первых, при окислении НАДН НАДН-дегидрогеназой из матрикса выбрасываетс я как минимум 4 протона. Во-вторых, кофермент Q, получая электроны от НАДН-дегидрогеназы, захватывает 2 Н + из матрикса; при его окислении цитохромами b и с 1 эти протоны выбрасываются в межмембранное пространство, а за счет работы так называемого Q-цикла это количество увеличивается еще на 2 Н + . В-третьих, 2 протона выбрасываются из митохондрий при работе цитохромоксидазы. Итак, окисление НАДН сопровождается переносом через митохондриальную мембрану из матрикса как минимум 10 протонов. При окислении ФАДН 2 отщепляемые от него 2 электрона и 2 протона передаются сразу на кофермент Q, поэтому при окислении ФАДН 2 через мембрану митохондрий переносится только 6 протонов.

В результате работы дыхательной цепи митохондрий концентрация Н + в межмембранном пространстве существенно превышает их концентрацию в матриксе, что создает направленный внутрь митохондрий градиент концентрации протонов. Мембрана митохондрий для них непроницаема, поэтому ее можно сравнить с плотиной гидроэлектростанции, удерживающей воду в водохранилище. Энергия этого градиента используется ферментом АТФ-синтетазой , которая переносит в матрикс ионы Н + и синтезирует АТФ из АДФ и Ф н.

Для синтеза 1 молекулы АТФ необходимо перенести внутрь митохондрий 3 иона Н + по градиенту концентрации, поэтому за счет окисления 1 молекулы НАДН можно синтезировать 3 молекулы АТФ, а за счет окисления 1 молекулы ФАДН 2 – 2 молекулы АТФ.

Кроме того, часть энергии градиента концентрации протонов тратится на перенос через внутреннюю мембрану митохондрий различных веществ. Синтез АТФ в митохондиях ферментом АТФ-синтетазой называют окислительным фосфорилированием , подчеркивая связь этого процесса с окислением органических субстратов.

Таким образом, в результате полного окисления глюкозы до углекислого газа и воды образуется большое количество АТФ – 38 молекул. Две из них синтезируются в процессе гликолиза, а остальные 36 – при окислении пирувата. Во-первых, в гликолизе при образовании одной молекулы пирувата восстанавливается молекула НАДН, а его окисление в митохондриях дает 3 молекулы АТФ. Во-вторых, при декарбоксилировании пирувата и образовании ацетил-КоА восстанавливается еще одна молекула НАДН (еще 3 молекулы АТФ). В-третьих, в цикле Кребса образуется 3 молекулы НАДН (а это 9 молекул АТФ), 1 молекула ФАДН 2 (еще 2 молекулы АТФ) и 1 молекула ГТФ (обменивается своим терминальным макроэргическим фосфатом с АДФ, что дает еще 1 молекулу АТФ). Таким образом, полное окисление образовавшихся в гликолизе 1 молекулы НАДН и 1 молекулы пирувата дает 18 молекул АТФ, а двух – соответственно 36 молекул АТФ. С учетом 2 молекул АТФ, образованных в процессе гликолиза, полный энергетический выход окисления глюкозы до углекислого газа и воды в процессе клеточного дыхания составляет 38 молекул АТФ .



Итоговое уравнение этого процесса будет выглядеть следующим образом:

С 6 H 12 O 6 + 6О 2 + 38АДФ + 38Ф н --> 6CO 2 + 6H 2 O + 38АТФ

Эффективность полного окисления глюкозы до углекислого газа и воды очень высока: от 55 до 70% освобождающейся энергии (в зависимости от условий) запасается в виде макроэргических связей в молекулах АТФ; остальная энергия рассеивается в виде тепла. Таким образом, основным продуктом реакций энергетического обмена является АТФ.

В ходе этой реакции углерод окисляется кислородом воздуха (углерод максимально восстановлен в метане (СН 4) и максимально окислен в углекислом газе (CO 2)), что и приводит к освобождению энергии в виде тепла. Аналогичный процесс протекает и в живых клетках аэробных организмов, однако он имеет ряд существенных отличий.

Первичным источником энергии в живых организмах является Солнце. Энергия, приносимая световыми квантами (фотонами), поглощается пигментом хлорофиллом, содержащимся в хлоропластах зеленых листьев, и накапливается в виде химической энергии в различных питательных веществах.

Все клетки и организмы можно разделить на два основных класса в зависимости от того, каким источником энергии они пользуются. У первых, называемых аутотрофными (зеленые растения), СО 2 и Н 2 О превращаются в процессе фотосинтеза в элементарные органические молекулы глюкозы, из которых и строятся затем более сложные молекулы.

Клетки второго класса, называемые гетеротрофными (животные клетки), получают энергию из различных питательных веществ (углеводов, жиров и белков), синтезируемых аутотрофными организмами. Энергия, содержащаяся в этих органических молекулах, освобождается главным образом в результате соединения их с кислородом воздуха (т.е. окисления) в процессе, называемом аэробным дыханием. Этот энергетический цикл у гетеротрофных организмов завершается выделением СО 2 и Н 2 О.

Клеточное дыхание - это окисление органических веществ, приводящее к получению химической энергии (АТФ). Большинство клеток использует в первую очередь углеводы. Полисахариды вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносхаридов: крахмал, глюкоза (у растений), гликоген (у животных).

Жиры составляют «первый резерв» и пускаются в дело главным образом тогда, когда запас углеводов исчерпан. Однако в клетках скелетных мышц при наличии глюкозы и жирных кислот предпочтение отдается жирным кислотам. Поскольку белки выполняют ряд других важных функций, они используются лишь после того, как будут израсходованы все запасы углеводов и жиров, например, при длительном голодании.

Этапы энергетического обмена: Единый процесс энергетического обмена можно условно разделить на три последовательных этапа:

Первый из них - подготовительный . На этом этапе высокомолекулярные органические вещества в цитоплазме под действием соответствующих ферментов расщепляются на мелкие молекулы: белки - на аминокислоты, полисахариды (крахмал, гликоген) - на моносахариды (глюкозу), жиры - на глицерин и жирные кислоты, нуклеиновые кислоты - на нуклеотиды и т.д. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде тепла.

Белки + Н 2 О=аминокислота + тепло (рассеивается)

Жиры + Н 2 О = глицерин + жирные кислоты + тепло

Полисахариды + Н 2 О = глюкоза + тепло

Второй этап - бескислородный, или неполный. Образовавшиеся на подготовительном этапе вещества - глюкоза, аминокислоты и др. - подвергаются дальнейшему ферментативному распаду без доступа кислорода. Примером может служить ферментативное окисление глюкозы (гликолиз), которая является одним из основных источников энергии для всех живых клеток. Гликолиз - многоступенчатый процесс расщепления глюкозы в анаэробных (бескислородных) условиях до пировиноградной кислоты (ПВК), а затем до молочной, уксусной, масляной кислот или этилового спирта, происходящий в цитоплазме клетки. Глюкоза под воздействием ферментов расщепляется до двух молекул С 3 Н 6 О 3 с выделением энергии.60% этой энергии рассеивается в виде тепла, 40% в виде АТФ.

Переносчиком электронов и протонов в этих окислительно-восстановительных реакциях служит никотинамидадениндинуклеотид (НАД) и его восстановленная форма НАД *Н. Продуктами гликолиза являются пировиноградная кислота, водород в форме НАД Н и энергия в форме АТФ.

При разных видах брожения дальнейшая судьба продуктов гликолиза различна. В клетках животных и многочисленных бактерий ПВК восстанавливается до молочной кислоты. Известное всем молочнокислое брожение (при списании молока, образовании сметаны, кефира и т.д.) вызывается молочнокислыми грибками и бактериями.

При спиртовом брожении продуктами гликолиза являются этиловый спирт и СО 2 . У других микроорганизмов продуктами брожения могут быть бутиловый спирт, ацетон, уксусная кислота и т.д.

В ходе бескислородного расщепления часть выделяемой энергии рассеивается в виде тепла, а часть аккумулируется в молекулах АТФ.

Третий этап энергетического обмена - стадия кислородного расщепления, или аэробного дыхания, происходит в митохондриях. На этом этапе в процессе окисления важную роль играют ферменты, способные переносить электроны. Структуры, обеспечивающие прохождение третьего этапа, называют цепью переноса электронов. В цепь переноса электронов поступают молекулы - носители энергии, которые получили энергетический заряд на втором этапе окисления глюкозы. Электроны от молекул - носителей энергии, как по ступеням, перемещаются по звеньям цепи с более высокого энергетического уровня на менее высокий. Освобождающаяся энергия расходуется на зарядку молекул АТФ. Электроны молекул - носителей энергии, отдавшие энергию на «зарядку» АТФ, соединяются в конечном итоге с кислородом. В результате этого образуется вода. В цепи переноса электронов кислород - конечный приемник электронов. Таким образом, кислород нужен всем живым существам в качестве конечного приемника электронов. Кислород обеспечивает разность потенциалов в цепи переноса электронов и как бы притягивает электроны с высоких энергетических уровней молекул - носителей энергии на свой низкоэнергетический уровень. По пути происходит синтез богатых энергией молекул АТФ. В итоге на кислородном этапе образуется 36 АТФ.